Home   Matematica    Fisica    Ingegneria    Varie    Per acquistare    Contattaci

Matematica - Altri testi

 

SUCCESSIONI E SERIE DI FUNZIONI

Andrea Laforgia

 

 

CAPITOLO I. Successioni e serie di funzioni

 

Successioni di funzioni.Convergenza puntuale e uniforme.Il criterio di Weierstrass per la convergenza uniforme di una serie. Convergenza uniforme e continuitą.Teorema sull'inversione dei limiti e criterio di Cauchy per la convergenza uniforme.Il teorema di Dini.Convergenza uniforme e integrazione.Convergenza uniforme e derivazione.Appendice.

 

CAPITOLO II. Serie di potenze

 

Introduzione e primi esempi. Proprietą di convergenza delle serie di potenze.Criteri per la ricerca del raggio di convergenza di una serie di potenze. Integrazione e derivazione delle serie di potenze.Serie di Taylor. Moltiplicazione e divisione delle serie di potenze. La serie binomiale.Valutazione di alcuni integrali per mezzo di serie di potenze.    Il prodotto di Wallis.

 

CAPITOLO III.Le serie di Fourier

 

Introduzione.Sviluppi di serie.Alcuni esempi di serie di Fourier.Convergenza della serie di Fourier.Dimostrazione del teorema della convergenza puntuale della serie di Fourier.Integrazione della serie di Fourier.Derivazione della serie di Fourier.Prodotti infiniti.Considerazioni conclusive sulla serie di Fourier.Il fenomeno di Gibbs.

 

CAPITOLO IV. Approfondimenti del concetto di uniforme                          convergenza

  Introduzione.Il teorema di Ascoli-Arzelą.Il teorema di Abel.

 

Copyright 2006